Distribution-Free One-Pass Learning
نویسندگان
چکیده
منابع مشابه
Distribution-Free One-Pass Learning
In many large-scale machine learning applications, data are accumulated with time, and thus, an appropriate model should be able to update in an online paradigm. Moreover, as the whole data volume is unknown when constructing the model, it is desired to scan each data item only once with a storage independent with the data volume. It is also noteworthy that the distribution underlying may chang...
متن کاملOne-Pass Multi-View Learning
Multi-view learning has been an important learning paradigm where data come from multiple channels or appear in multiple modalities. Many approaches have been developed in this field, and have achieved better performance than single-view ones. Those approaches, however, always work on small-size datasets with low dimensionality, owing to their high computational cost. In recent years, it has be...
متن کاملStreamed Learning: One-Pass SVMs
We present a streaming model for large-scale classification (in the context of l2-SVM) by leveraging connections between learning and computational geometry. The streaming model imposes the constraint that only a single pass over the data is allowed. The l2-SVM is known to have an equivalent formulation in terms of the minimum enclosing ball (MEB) problem, and an efficient algorithm based on th...
متن کاملOne-pass online learning: A local approach
Online learning is very important for processing sequential data and helps alleviate the computation burden on large scale data as well. Especially, one-pass online learning is to predict a new coming sample’s label and update the model based on the prediction, where each coming sample is used only once and never stored. So far, existing one-pass online learning methods are globally modeled and...
متن کاملLipreading with Spiking Neurons - One Pass Learning
We present in this article a lipreading system implementing spiking neurons (STANs). A new preprocessing is proposed in order to reduce as much as possible the learning phase of the system. This training is done in one pass: the user pronounces once all of the words of the dictionary; the system is then able to recognize these words throughout di erent sessions during which the position and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2019
ISSN: 1041-4347,1558-2191,2326-3865
DOI: 10.1109/tkde.2019.2937078